LETTERS TO THE EDITOR

Reactions of Spiro[2.3]hexane-5-carbonyl Chloride with Phosphorus(III) Acids Esters

Yu. N. Mitrasov, D. A. Sosnov, and O. V. Kondrat'yeva

Yakovlev Chuvash State Pedagogical University, ul. K. Marksa 38, Cheboksary, 428000 Russia e-mail: sosnovd1987@mail.ru

Received February 14, 2013

DOI: 10.1134/S1070363213060303

We have previously shown that the reaction of bicyclo[4.1.0]heptane-7-carbonyl chloride with medium esters of phosphorous and arylphosphonous acids occurs with the retention of the small carbocycle [1]. In continuation of this work it is interesting to study the behavior of carbonyl compounds of spirohexane series in the Arbuzov reaction [2]. Due to the high energy strain of these spiranes one could expect unusual reaction course affording new types of organophosphorus compounds.

We found that spiro[2.3]hexane-5-carbonyl chloride I reacts readily with phosphorous and arylphosphonous acids esters. When an equimolar ratio of reagents was used under mild conditions (0–20°C), the attack of the P-nucleophiles occurs on the carbon atom of the carbonyl group. As a result, the reaction produces dialkyl spiro[2.3]hexane-5-carbonyl phosphonates IIa–IIc or alkylarylspiro[2.3]hexane-5-carbonyl phosphinates IId–IIf.

$$\begin{array}{c|c} & & & \\ \hline & & \\$$

n = 0, $R^2 = C_2H_5$ (a), C_3H_7 (b), C_4H_9 (c); n = 1, $R^1 = C_6H_5$, $R^2 = C_2H_5$ (d), C_3H_7 (e), C_4H_9 (f).

The structure of compounds **Ha–Hf** was confirmed by the IR and 1 H NMR spectroscopy. Thus, in the IR spectra there are low-intensive peaks of the stretching vibrations of the C–H bonds of the three-membered ring in the range of 3090–3095 cm⁻¹ and the strong absorption bands of carbonyl, phosphoryl, and ester groups at 1700–1705, 1255–1260, 995–1050 cm⁻¹, respectively. The 1 H NMR spectra the three-membered ring protons resonate in a strong field (δ 0.61 ppm). The four-membered ring protons were observed in a weaker field as a doublet at δ 2.77 ppm (4H, CH₂, $^{3}J_{\rm HH}$ 7.75 Hz) and a multiplet at 3.24 ppm (1H, CH). The protons of alkoxy groups and aromatic ring appear in characteristic areas.

Compound IIa. Yield 75%, bp 151–153°C (5 mm Hg), d_4^{20} 1.1693 g cm⁻³, n_D^{20} 1.4774.

Compound IIb. Yield 82%, bp 161–162°C (2 mm Hg), d_4^{20} 1.1307 g cm⁻³, n_D^{20} 1.4765.

Compound IIc. Yield 76%, bp 167–168°C (1 mm Hg), d_D^{20} 1.1006 g cm⁻³, n_D^{20} 1.4752.

Compound IId. Yield 81%, bp 182–183°C (1 mm Hg), d_4^{20} 1.1992 g cm⁻³, n_D^{20} 1.5456.

Compound He. Yield 78%, oily substance, d_4^{20} 1.1792 g cm⁻³, n_D^{20} 1.5418.

Compound IIf. Yield 79%, oily substance, d_4^{20} 1.1594 g cm⁻³, n_D^{20} 1.5378.

REFERENCES

- 1. Mitrasov, Yu.N., Sosnov, D.A., Lukicheva, N.A., and Kondrat'yeva, O.V., *Vestn. Chuvashck. Gos. Ped. Univ. imeni I.Ya. Yakovleva*, 2011, no. 2(70), p. 108.
- 2. Gazizov, T.Kh., Reaktsiya Arbuzova. Reaktsii efirov kislot P(III) s galogensoderzhashchimi elektrofil'nymi soedineniyami (Arbuzov Reaction. Reactions of P(III) Acid Esters with Halogen Electrophilic Compounds), Kazan: IOFKh imeni A.E. Arbuzova, 1991, pt. 1.